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Abstract

A mesh-free numerical method (MPS±MAFL) is presented for the analysis of gas±liquid two-phase
¯ows. In this method, a particle method (MPS) is combined with a gridless method (MAFL) for an
arbitrary-Lagrangian±Eulerian calculation. Gas±liquid two-phase ¯ows are calculated directly by the
present method with and without the phase change. As an isothermal ¯ow, a gas bubble rising in
viscous liquids is simulated numerically and the results are compared with the empirical correlation. The
energy equation is coupled with the equation of motion for the calculation of nucleate pool boiling.
Numerical results are provided for the bubble growth rate, departure radius, and the heat transfer rate,
which show a good agreement with experimental observations. The heat transfer mechanism associated
with nucleate pool boiling is evaluated quantitatively and discussed with previous empirical
studies. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two-phase ¯ows with boiling are fundamental and important phenomena in many
engineering problems as chemical or power plants. For example, in the ®eld of nuclear
engineering, a good knowledge on the thermal-hydraulics of two-phase ¯ows is a basis for the
design and the safety analysis of a light water reactor. However, the mechanisms of mass,
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momentum, and energy transfers through the two-phase interface are extremely complicated
and their numerical models largely depend upon relevant empirical correlations for a wide
range of operating and design conditions. In the present study, a correlation-free numerical
method is proposed for the direct calculation of a bubble growth in nucleate pool boiling.
Several analytical and numerical studies on nucleate boiling were presented. For a

homogeneous temperature ®eld, Plesset and Zwick (1954) presented a one-dimensional
analytical solution of the equation of motion for a spherical bubble (Rayleigh, 1917). Lee and
Nydahl (1989) conducted a numerical study of bubble growth in nucleate boiling, where the
heterogeneous temperature ®eld and the hydrodynamics were solved assuming a hemispherical
shape for the vapor bubble. The direct calculation of the moving phase interface in nucleate
pool boiling was realized by Welch (1995), where the ®nite volume method was applied on a
moving unstructured mesh. However, the calculation was limited to a small deformation of the
phase interface due to the numerical instability caused by a severe distortion of the
computational grid.
It is essential, for a direct calculation of the two-phase ¯ow without empirical correlations,

to trace two-phase interfaces accurately, since a physical quantity is discontinuous at the
interface. In the ®nite di�erence methods such as marker-and-cell (Welch et al., 1966) and
volume-of-¯uid (Hirt and Nichols, 1981) methods, the moving interface is traced with marker
particles or functions that are advected through the ®nite di�erence mesh. In these methods,
the physical quantity at a computing cell implying a phase interface is calculated by volumetric
averaging of vapor and liquid phases. Thus the discontinuous phase interface is likely to be
smoothed out. Besides the problem concerning the moving interface, the steep temperature
pro®le near the moving phase interface should be calculated for the analysis of nucleate
boiling. A ®ne computational mesh has to be generated adaptively along the moving boundary
for the calculation of this thermal layer. This is di�cult in the conventional ®nite di�erence
methods since they are usually implemented on rectangular Eulerian grids. The numerical
schemes such as arbitrary-Lagrangian±Eulerian (ALE) by Hirt et al. (1974), the boundary-
®tted-coordinates (BFC) by Ryskin and Leal (1983), and the ®nite volume method (FVM) by
Rhie and Chow (1983) have an advantage since their mesh can be generated to ®t the interface
shape. The discontinuity of the phase interface could be accurately resolved in these methods.
The generation of interface-®tted mesh, however, is troublesome when the interface deforms
largely.
In this paper, we present a mesh-free numerical method for direct calculation of bubble

growth. It is a combination of particle and gridless methods where the terms, `particle' and
`gridless', refer to Lagrangian and Eulerian schemes, respectively. Thus, an arbitrary-
Lagrangian±Eulerian calculation is possible, in this method, with a cloud of computing points
that are equivalent to the computing cells in mesh-based methods. The moving interface is
traced through the Lagrangian motion of the computing points using a particle method and, at
the ®xed computing points, convection is calculated using a gridless method. The particle
interaction model of the moving-particle semi-implicit (MPS) method (Koshizuka and Oka,
1996) is applied to the di�erential operators and the meshless-advection using ¯ow-directional
local-grid (MAFL) scheme (Yoon et al., 1999) is utilized for the gridless method. A complex
moving interface problem can be e�ectively analyzed by MPS±MAFL since the mesh is no
longer used. Using the present method, numerical analyses are provided for a single bubble in
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both isothermal and nucleate pool boiling conditions. The heat transfer mechanism of nucleate
pool boiling is discussed quantitatively based on the numerical results. All the calculations are
carried out in x±y two-dimensional coordinates except for the heat transfer estimation where
the liquid volume is computed assuming an axisymmetric condition.

2. Governing equations

The continuity, Navier±Stokes and energy equations for incompressible viscous ¯ows are

r � u � 0, �1�

r

�
@u

@t
� �uÿ uc� � ru

�
� ÿrp� mr 2u� sk � n� rg, �2�

and

@T

@t
� �uÿ uc� � rT � ar 2T �3�

where r is liquid density, m is viscosity, s is surface tension constant, k is curvature of the
interface, n is unit normal vector to the interface, T is temperature, and a is thermal di�usivity.
In the convection terms of Eqs. (2) and (3), u is the ¯uid velocity and uc represents the motion
of a computing point that is adaptively con®gured during the calculation. An arbitrary
calculation is allowed between fully Lagrangian (uc = u) and Eulerian (uc = 0) calculations so
that a sharp ¯uid front is calculated accurately by moving the computing point in Lagrangian
coordinates while the ®xed boundaries are described with Eulerian coordinates.

3. The numerical method

The calculation procedure consists of three phases Ð Lagrangian, re-con®guration, and
convection (Eulerian) phases. In the ®rst phase, the right side of Eq. (2) is solved explicitly and
the temporal velocity, u�, is obtained by

u� � un � Dt
r

�
mr 2un � s�k � n�n�rg

�
�4�

where the superscript `n' refers to time level and Dt is time increment. Then the temporal
location of the computing point becomes

r� � rn � u�Dt �5�
The pressure is calculated implicitly using the continuity equation as in the case of
conventional mesh-based methods such as MAC or SIMPLE.
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r 2Pn�1 � r
Dt
r � u� �6�

The temporal velocity is updated by the pressure gradient as

uL ÿ u�

Dt
� ÿ1

r
rPn�1 �7�

and the position of the computing point is replaced by

rL � rn � uLDt �8�
where the superscript `L' stands for the Lagrangian description. The temperature at rL is
obtained by solving Eq. (3) explicitly as

T L � T n � ar 2T n � Dt: �9�
The particle interaction models of the MPS method, which will be presented in Section 3.1, are
applied to the calculation of the di�erential operators, r and r 2, in Eqs. (4), (6), (7) and (9).
Large topological changes in ¯uids such as dam collapse (Koshizuka and Oka, 1996), ¯uid-
structure interaction (Koshizuka and Oka, 1998) and the fragmentation process in steam
explosion (Ikeda et al., 1996) were successfully analyzed using MPS.
In the re-con®guration phase, the new-time positions, rn+1, are determined by adjusting the

con®guration of computing points at rL and the velocity of a computing point, uc, is calculated
by

uc � rn�1 ÿ rn

Dt
: �10�

From Eqs. (8) and (10), the arbitrary convection velocity ua becomes

rL ÿ rn

Dt
ÿ rn�1 ÿ rn

Dt
� ÿrn�1 ÿ rL

Dt
: �11�

The position changes associated with the velocities uL, uc and ua are illustrated in Fig. 1. The
re-con®guration scheme is discussed in detail in Section 3.2.
Finally, the convection terms of Eqs. (2) and (3) are solved to obtain the values of velocity

and temperature at the computing points con®gured in the second phase. This corresponds to
the interpolation of values at rL ÿ Dtua from the pro®les of uL and T L as

un�1 � u�rn�1� � u�rL ÿ Dt ua� �12�
and

T n�1 � T�rn�1� � T�rL ÿ Dt ua�: �13�
The gridless convection scheme MAFL is used for the calculation of Eqs. (12) and (13). The
description of MAFL will be given in Section 3.3.
The accuracy of MPS±MAFL was tested through the calculation of natural convection in a
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square cavity (Koshizuka et al., 2000). In this study, the numerical di�usion was small and the
numerical results of MPS±MAFL were on the same level of precision with the conventional
®nite di�erence or ®nite element methods.

3.1. Lagrangian phase

Each di�erential operator appeared in the governing equation is replaced by the particle
interaction model. A particle interacts with its neighboring particles with a weight function
w�r, re�, where r is the distance between two particles and re is the radius of interaction area.
Here the particle is identical with the computing point in Eulerian context and the following
function is employed for the weight function throughout the study.

w�r, re� �
8<:

re
r
ÿ 1 �0Rr < re�

0 �reRr�
�14�

Since the in¯uential area of the weight function is bounded by re, a particle interacts with a
®nite number of neighboring particles in rRre: The radius of interaction area varies in space
and time, i.e. re � re�r, t� so that the number of particles within re is always kept constant.
Then the normalization factor at ri is de®ned by

ni �
X
j 6�i

w
ÿjrj ÿ rij, re, ij

� �15�

where re,ij � �re,i � re,j �=2 is used instead of re,i for the conservation of physical properties.
The di�erential operator vector r in the pressure gradient term of Eq. (2) is expressed in

terms of scalar quantities of each particle with the weight function of Eq. (14). A gradient
vector between two particles i and j possessing scalar quantities fi and fj at ri and rj is simply
de®ned by �fjÿfi ��rjÿ ri �=jrjÿ rij2: Then the gradient vector at the particle i is given as the

Fig. 1. Schematic diagram of numerical algorithm.

H.Y. Yoon et al. / International Journal of Multiphase Flow 27 (2001) 277±298 281



weighted average of the gradient vectors between the particle i and its neighboring particles j,

hrfii �
d

ni

X
j 6�i

"
fj ÿ fi

jrj ÿ rij2 �
rj ÿ ri�w

ÿjrj ÿ rij, re, ij
�# �16�

where d is the number of space dimensions.
The Laplacian operator r 2 representing di�usion is modeled by distribution of a quantity

from a particle to its neighboring particles by use of the weight function,

hr 2fii �
2d

li

X
j 6�i

hÿ
fj ÿ fi

�
w
ÿjrj ÿ rij, re, ij

�i �17�

where

li �
X
j 6�i

h
jrj ÿ rij2w

ÿjrj ÿ rij, re, ij
�i
: �18�

This Laplacian model is conservative since the quantity lost by the particle i is just obtained by
the particle j.
The divergence operator is modeled just like the same way in the gradient model since it is a

scalar product of gradient vectors. The velocity divergence between two particles i and j is
de®ned by �ujÿui � � �rjÿri �=jrjÿrij2 and the velocity divergence at the particle i is given by the
weighted average of the individual velocity divergences.

hr � uii �
d

ni

X
j 6�i

��uj ÿ ui� � �rj ÿ ri�
jrj ÿ rij2

w
ÿjrj ÿ rij, re, ij

�� �19�

The right side of Eq. (6) is calculated using Eq. (19) and the left side of Eq. (6) is calculated
using the Laplacian model shown in Eq. (17). Then we have simultaneous equations expressed
by a linear symmetric matrix. These are solved by the incomplete Cholesky conjugate gradient
(ICCG) method. Since this incompressibility model is based on the velocity divergence, the
particle number density need not be constant and particles are allowed to be concentrated
locally for higher resolution.
Number of space dimension, d, in the gradient and divergence models of Eqs. (16) and (19)

is employed to compensate the loss of vertical component of each gradient vectors when they
are normalized by ni: For instance, in a two-dimensional rectangular grid, each component of
the gradient vector at point i becomes Df=2 by Eq. (16) without d. As long as the particle
number density is kept constant, the compensation by d does not cause any signi®cant error
regardless of the con®guration of particles. However, in the present application, the particle
distribution is not uniform and the compensation by d in Eqs. (16) and (19) may result in
signi®cant error. So the gradient and divergence models should be modi®ed such that
normalization factors are computed in x, y, z directions separately instead of using the number
of space dimension, d. Then Eqs. (16) and (19) are replaced with
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hrfii, x �
1

ni, x

X
j 6�i

"
fj ÿ fi

jrj ÿ rij2 �
rj, x ÿ ri, x�w

ÿjrj ÿ rij, re, ij
�# �16a�

and

hr � uii �
X
j 6�i

X
k�x, y, z

�uj, k ÿ ui, k� � �rj, k ÿ ri, k�
ni, k

w
ÿjrj ÿ rij, re, ij

�
jrj ÿ rij2

�19a�

where

ni, x �
X
j6�i

�rj, x ÿ ri, x�2
jrj ÿ rij2

w
ÿjrj ÿ rij, re, ij

�
:

The second subscripts used in Eqs. (16a) and (19a) represent the x, y, and z components of
each vectors of r, u and rf, respectively.
Surface tension is implemented by computing the curvature of the phase interface and the

pressure gradient, rp � sk, is added to the governing equation explicitly. The moving interface
is always clearly de®ned, in the present method, through the Lagrangian motion of the
particles on the phase interface and the curvature of the interface can be easily calculated from
the con®guration of the interface particles.

3.2. Re-con®guration phase

The fully Lagrangian method is not adequate for describing inlet or outlet ¯ow boundaries.
Also, in the particle method, the ¯uid front is not clear due to the irregular distribution of the
surface particle. Thus, the computing point, particle in Lagrangian context, is re-con®gured.
The physical quantities at new-time position are then interpolated using a convection scheme.
After the positions have been moved from rn to rL in Lagrangian phase, the computing point

belonging to inlet or outlet ¯ow boundaries goes back to its original position, rn, for a fully
Eulerian calculation. In this case, uc equals to zero in Eqs. (2) and (3) and the arbitrary
convection velocity ua coincides with the ¯uid velocity. On the other hand, the free surface is
traced by moving the computing points in Lagrangian description without calculating the
convection term. In this case, the position at new-time step, rsurf

n+1, simply becomes rsurf
L where

the subscript `surf' refers to the free surface. However, in practice, rsurf
n+1 is slightly moved from

rsurf
L since the computing points are likely to cluster locally in the fully Lagrangian calculation.
After the positions of boundary points have been determined, the remaining computing points
are con®gured considering the geometry of boundaries.
The way of con®guring the computing point depends on the speci®c problem. This

corresponds to the mesh generation scheme in the conventional mesh-based method. Although
it is somewhat laborious task to con®gure the computing points for a complex geometry,
especially in three dimensions, it is much easier in our method and takes less time than
generating the mesh structure in the mesh-based method. The number of computing points
needs not be kept constant so that one can drop more computing points to improve the local
resolution.
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Once the positions at new-time step �n� 1� are determined, the convection velocity, ui
a, is

calculated by Eq. (11) and the physical properties such as ¯ow velocity and temperature at
ri
n+1 are interpolated by a convective calculation of

fn�1i � f
ÿ
rn�1i

� � f
ÿ
rL
i ÿ Dtua

i

� �20�
where f is u or T. The number of computing points dose not change in Eq. (20) when they are
re-con®gured since f n+1 and f L are de®ned at the same computing point i. When the number
of computing points changes in re-con®guration phase, the physical quantities at ri

n+1 are
determined by

f n�1ÿrn�1i

� � f L
ÿ
rL
o ÿ Dtua

i

� �21�
where ro

L is the closest point to ri
n+1 among all rL and ua

i �ÿ�rn�1i ÿrL
o �=Dt: A computing point

at ri
L can have a single or multiple upstream points, ri

n+1, depending on the re-con®guration
scheme. It is also probable that there exists no upstream point at all.

3.3. Convection phase

Any multi-dimensional convection problem can be regarded as a one-dimensional problem if
a computational grid is generated along the ¯ow direction. Considering the ¯ow direction at
each computing point (ua in Eqs. (12) and (13)), a one-dimensional local grid is generated as
shown in Fig. 2 where Dr shows the distance between local grid points and re, i is the radius of
interpolation area. The positions of local grid points are denoted by hrik: Locations and the
number of local grid points are determined based on the di�erence scheme that will be applied
to. For example, in Fig. 2, three local grid points are placed (two are in the upstream and the
other is in the downstream of a computing point) for the application of a second-order upwind
scheme.
For the local grid points on the one-dimensional local grid, the physical properties, h f ik, are

interpolated from those of neighboring computing points, f L
j , using a weight function as

follows.

Fig. 2. Generation of local grid.
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hfik �

X
j

fLj w
�
jrL

j ÿ hrikj, re, k
�

X
j

w
�
jrL

j ÿ hrikj, re, k
� , k � ÿ2, ÿ 1, 1 �22�

The weight function in Eq. (14) is utilized for the calculation of Eq. (22). The interpolation
region is limited by a circle (sphere for three dimensions) of the radius of interpolation area,
re, k, and the grid lines vertical to the ¯ow direction as shown in Fig. 2. If all the particles
within the radius of re, k are used for the interpolation, the interpolation regions would overlap
each other and this would cause more numerical di�usion since the more computing points are
engaged in Eq. (22) as the interpolation area becomes large.
Any di�erence scheme can be applied easily since a one-dimensional grid has been obtained

along the ¯ow direction. In the present study, a ®rst-order upwind scheme is applied as

fn�1i � fLi ÿ q
ÿ
fLi ÿ hfiÿ1

� �23�
where q � juajDt=Dr, while the QUICK scheme was applied in the previous paper (Yoon et al.,
1999). This is because that a higher-order scheme such as QUICK often causes numerical
instability when the number and location of the computing point largely change during the re-
con®guration phase and thus the pro®le of the convection velocity, ua, is distorted severely.

4. A rising bubble in viscous liquids

Prior to the boiling problem, the present method is applied ®rst to the isothermal ¯ow of a
single bubble rising in viscous ¯uids. The phase change and heat transfer are not considered in
this section.
In the previous study (Yoon et al., 1999), the bubble shapes in viscous liquids were analyzed

using the present method and compared to the empirical correlation of Grace (1973) shown in
Fig. 3. However, in this study, a constant ¯ow condition was imposed on the top and bottom
boundaries to hold the bubble in the computational domain and thus the whole process of
bubble deformation from a stagnant state to a fully developed condition was not simulated. In
the present calculation, a spherical bubble of radius 1 cm is placed in a stagnant liquid and
rises during 0.3 s for various liquid properties. The gas±liquid interface is considered as a free-
boundary as in the case of the BFC method (Ryskin and Leal, 1984). This is a good
approximation when the density and viscosity of the gas are small compared with those of
liquid.
Fig. 4 shows the initial distribution of computing points where the liquid channel width and

height are 16 and 8 cm, respectively. Computing points are con®gured in four regions of (1),
(2), (3), and (4) so that they ®t the gas±liquid interface and are concentrated near the interface
for a higher resolution. In the region (1), the computing points are distributed to ®t the
interface. The region (2) surrounding (1) is ®lled with the computing points in rectangular
array. The resolution of the computing point is lowered as the distance from the interface
increases. The growth ratio of the space is 1.15 for (1) and (2) while the computing points are
uniformly distributed in the region (3). In the region (4), which is placed in the upper and
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lower side of (3), layers of computing points are con®gured with a growth ratio of 1.15. The
number of computing points is varied during the simulation from the initial number of 1763.
The number of computing points does not need to be kept constant and the physical quantities
at the re-con®gured points are interpolated using the convection scheme described in Section 3.
No-slip condition is applied to the computing point of the wall boundary.
The bubble shapes computed by the present method are depicted in Figs. 5(a)±(f) for various

liquid properties which are expressed in terms of three dimensionless numbers, i.e. Morton
M � gm4=rs3), Eotvos �Eo � grd 2=s�, and Reynods �Re � r Ud=m� numbers. In Fig. 5(a), we
can see that a spherical-cap shape is obtained at M � 4:81� 10ÿ13 and Eo � 7:84� 101 which
correspond to the property of pure water. A dimpled shape is observed in Fig. 5(b) where M �
7:84� 101 with the same Eo as in Fig. 5(a). Elliptical shapes are obtained in Fig. 5(c) and (d)
(M = 9.8 � 10ÿ7, Eo = 3.92 and M = 9.8 � 10ÿ3, Eo = 3.92), where M di�ers each other
with the same value of Eo. When M is large, which means a strong viscous force, the aspect
ratio (the ratio of the minor axis to the major axis) of the gas bubble is larger and the rising
velocity is slower than the case with small M. The bubbles are spherical when the viscosity or
the surface tension is large as illustrated in Fig. 5(e) and (f) (M = 4.9� 101, Eo = 7.84 and M
= 9.8 � 10ÿ6, Eo = 3.92� 10ÿ1). All the liquid states involved in the calculations (a) through
(f) are indicated in Fig. 3 for the comparison with the experimental data.
The volume of the gas bubble increases as it rises in the liquid due to the decrease in the

hydraulic pressure. For example, in case of (a), the gas pressure falls and the gas volume
increases as the bubble rises so that Pg � Vg is constant where Pg is the gas pressure and Vg is
the gas volume, respectively, as shown in Fig. 6. Although the calculations are x±y two-
dimensional, the results show a good agreement with the empirical correlation of Fig. 3.

Fig. 3. Grace's graphical correlation.
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5. Direct simulation of nucleate pool boiling

In this section, the energy equation of (3) is solved with the Navier±Stokes equation for the
calculation of boiling. The applicability of the present method to a boiling problem was
demonstrated in the previous study (Yoon et al., 1999) through the calculation of a spherical
vapor bubble in uniformly superheated liquid for which a one-dimensional analytical solution
was available (Plesset and Zwick, 1954). The bubble dynamics in nucleate boiling is much more
complicated since the bubbles are no longer spherical and the liquid temperature is
heterogeneous when they grow and depart from a heated surface. The conventional mesh-
based numerical methods are not e�ective for this problem since it is di�cult to generate ®ne

Fig. 4. Initial con®guration of computing points.
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meshes along the moving interface. Although there have been several numerical studies on
nucleate boiling, an assumed interface shape was usually incorporated or otherwise the
calculations were limited to a small deformation bubble shape. In the present study, the bubble
growth and departure processes are simulated using MPS±MAFL without the assumption on
the bubble shape and the numerical results are compared to the experimental data.

Fig. 5. Numerical simulation of rising bubble. (a) M = 4.81 � 10ÿ13, Eo = 7.84 � 10; (b) M = 7.84 � 10, Eo =
7.84� 10; (c) M = 9.8� 10ÿ7, Eo = 3.92; (d) M = 9.8� 10ÿ3, Eo = 3.92; (e) M = 4.9� 10, Eo = 7.84; (f) M =

9.8� 10ÿ6, Eo = 3.92� 10ÿ1.
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The calculation is based on the following physical models. First, uniform temperature and
pressure are assumed for the vapor phase so that the ®eld equations are solved only for the
liquid phase. These approximations can be validated from the fact that the thermal di�usion
length of the vapor is very large compared to the bubble diameter and the inertia e�ect of
vapor is negligible in nucleate boiling at atmospheric pressure. In addition, the temperature of
the phase interface is regarded as the saturation temperature for the vapor pressure (Zhang et
al., 1993). The evaporation or condensation rate is obtained from the heat ¯ux at the interface.

Fig. 5 (continued)
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5.1. Bubble growth in nucleate pool boiling

Usually the bubble generation process in nucleate pool boiling is described in terms of
waiting period �tw� and growth period �td�: During the waiting period, a transient thermal layer
is formed near the heated surface before the initiation of a vapor bubble. For a given size of
vapor cavity (Rc), the waiting period can be derived from the heat conduction equation for the
liquid layer and the thermodynamic equilibrium condition of a vapor bubble (Han and
Gri�th, 1965).

tw � 2

4pa

(
�Tw ÿ T1�Rc

Tw ÿ Tsat

�
1ÿ ÿ2s=Rcrghfg

��)2

�24�

where Tw is heater temperature and Tsat is saturation temperature.
Numerical simulations are carried out for the experiment of Han and Gri�th where the data

are available for the bubble growth rate, the heat ¯ux and the number of active bubble site.
The liquid (distilled water) is subcooled at 968C with atmospheric pressure and the solid
surface is heated at 1108C. The size of initial vapor bubble is 0.3 mm in radius with a contact
angle 458. The height and width of the water column are 15 and 10 mm, respectively. The
waiting period corresponding to the initial bubble radius is estimated by Eq. (24) and the heat
conduction calculation is performed during this waiting period to establish the initial thermal
layer on the heated surface and the vapor bubble. The computing points are con®gured in the
same way employed in Section 4 except that now the computing points are heavily
concentrated near the bubble surface for the calculation of the large temperature gradient. The
initial number of computing points is 4393.
Fig. 7 shows the bubble growth and departure process calculated by the present method.

Fig. 6. Gas pressure and volume changes for Fig. 5(a).
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The bubble grows fast for the ®rst few moments due to the liquid inertia and hardly grows in
the latter period where the evaporation or condensation governs the bubble growth. After the
bubble departed from the heated surface, the vapor volume decreases by the condensation into
the subcooled bulk liquid. In Fig. 8, the bubble growth rate calculated by the present method
is compared to the experiment and the theory for homogeneous temperature ®elds. The bubble
radii of the present calculation and the experiment grow fast in the early stage up to 5 ms and
are almost constant after 10 ms while it continues to grow without the convection e�ect in the
homogeneous theory.

5.2. Bubble departure from the heated surface

The size of vapor bubble departing from a heated surface is the function of buoyancy force
attempting to detach it from the surface and the surface tension force preventing from

Fig. 7. Bubble growth in nucleate pool boiling (Twall = 1108C, Tsat = 1008C, and T1 = 968C).
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detachment. When the bubble grows fast, the dynamic force becomes signi®cant so that the
liquid inertia force plays an important role in determining the departure diameter. For a
stagnant bubble, Fritz (1935) proposed a relation of bubble departure diameter from the
balance of buoyancy force against the surface tension force.

Dd1y
� s
g�rf ÿ rg�

�1=2
�25�

Here y denotes the contact angle in degree. Staniszewiski (1959) proposed an empirical
correlation of bubble departure diameter based on his experiments taking into account the
inertia force e�ect:

Dd1y
� s
g�rf ÿ rg�

�1=2�
1� 0:435

dD

dt

�
�26�

where dD/dt is the bubble growth rate in in./s. When the bubble growth rate is small, Eq. (25)
reduces to the relation of Fritz. In both cases, the bubble departure diameter is proportional to
the contact angle and the square root of the surface tension constant.
The e�ect of surface tension and the contact angle on the departure diameter is investigated

numerically using the present method. A stagnant bubble attached at the heated surface is
simulated with various values of surface tension and contact angle to examine the departure
diameter. The initial size of the bubble is relatively large about 1 mm so that the bubble
growth rate is small. In Figs. 9 and 10, the calculated departure diameters are linearly
proportional to y and s1=2 as predicted by the Fritz's relation.

Fig. 8. Comparison of bubble growth rates.
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5.3. Heat transfer mechanism

Since the numerical simulation has been performed in x±y two dimensions, an axisymmetric
condition is assumed only for the calculation of the heat transferred to the liquid. For a two-
dimensional computing cell i with area Dr2 shown in Fig. 11, the volumetric energy increase is
expressed as

Dqi � rfcpDTiD Vi �27�
where DTi is the temperature increase of a computing cell i during Dt, DVi � 2pxiDr2, and cp is
the speci®c heat of ¯uid.
The heat transfer area is divided into two regions Ð the pure conduction area Ac and the

Fig. 9. Departure radius vs. contact angle.

Fig. 10. Departure radius vs. surface tension.
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convection area Ab in¯uenced by the bubble motion. According to the observation of Han and
Gri�th, the radius of in¯uential area is about two times of the bubble departure radius Rd so
that

Ab � N � p�2Rd�2 �28�
and

Ac � Awall ÿ Ab �29�
where N is the number of active nucleate centers. Then the heat transfer rate in region Ab is
calculated using Eq. (27) as follows:

Qb � Nqb � Nfrfcp

X
i2Ab

DTiDVi �30�

where f is the bubble frequency de®ned as 1=�tw � td�: Jacob showed that the product of a
bubble frequency �f � and departure diameter �Rd� at a given nucleation cite is constant for a
given operating pressure, that is

fRd � constant: �31�
Since the bubble departure diameter is almost constant by Eq. (25), the bubble frequency can
be considered as constant without serious error. The conduction heat transfer rate Qc is
computed for the region Ac as the same way. The heat transfer rate due to the evaporation is
obtained by

Fig. 11. Volume element of a computing point.
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Qevap � Nqevap �32�
where

qevap � 4

3
fpR3

drghfg: �33�

In Table 1, each component of heat transfer rate computed by the present method is listed
with the superheat temperature and the number of bubble nucleation site. The heat transport
by evaporation occupies less than 3% and the convective heat transfer account for about 80%
of the total heat transfer rate. Fig. 12 compares the computed total heat transfer rate with the
experimental data and shows a pretty good agreement.
There are experimental evidences that substantiate this small contribution of latent heat to

Table 1
Calculation of heat transfer rates

DT
(8C)
(Tw ÿ Tsat)

N
(Number of active bubbles)a

qb
(W)

Qb

(W)

(N� q
.
b)

Qc

(W)
Qevap

(W)

(N� q
.
evap)

Qtot

(W)

0.0 0 0.0 0.0 45.10 0.0 45.10

12.83 12 6.04 72.48 31.32 2.03 105.83
13.95 18 7.38 132.84 26.86 3.72 163.42
14.23 20 7.90 158.00 26.36 4.18 188.54

15.92 20 9.38 187.60 29.20 4.90 221.70

a Han and Gri�th (1965).

Fig. 12. Comparison of heat transfer rates.
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the heat transport in surface boiling. For instance, Rohsenow et al. (1951) estimated the
fraction of heat transport which can be charged to the evaporation of a vapor bubble to the
total heat transport in nucleate boiling using the measured data obtained from the high-speed
motion pictures of boiling process. In this study, the heat transfer fraction due to latent heat
was less than 2%, and less than 10% even with the assumption of solidly packed bubbles. In
the study of Forster and Grief (1959), where each component of the heat transfer mechanism
in pool boiling was evaluated approximately, the latent heat transport was so small that it
accounted for only 2% of the total heat ¯ux. It was concluded, from these observations, that
the high rate of heat transfer associated with nucleate boiling was primarily due to the
convection of liquid layer from the motion of vapor bubbles.
Usually the heat transfer rate in nucleate pool boiling is expressed in terms of the wall

superheat such that

QA�Twall ÿ Tsat�n �34�
where n is most likely 3 (Rohsenow, 1952; Levy 1959). However, the heat transfer rate which
can be charged to a single vapor bubble is much less than that by Eq. (34) since the number
density of vapor bubbles also increases as a function of wall superheat. By taking the number
density of vapor bubbles into the consideration of the heat transfer rate, Eq. (34) can be
rewritten by

QAN a�Twall ÿ Tsat�b �35�
where the constants a and b are determined empirically. For instance, a is about 0.3 and b
varies from 1 to 2 in the study of Zuber (1963). In Fig. 13, the calculated heat transfer rate is
plotted for a single vapor bubble and it shows that the constant b is 2 in this study and within
the range of empirical values.

Fig. 13. Heat transfer rate per a single vapor bubble.
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6. Conclusions

A mesh-free numerical method (MPS±MAFL) has been presented for the direct calculation
of gas±liquid two-phase ¯ows. The phase interface is accurately traced by the Lagrangian
motion of the computing point and the large deformation of the interface is calculated
e�ectively since the mesh structure is no longer used in the present method. The shapes of a
rising bubble in stagnant viscous liquids were simulated in two dimensions and the typical
bubble shapes found in the experiment were accurately reproduced for a wide range of liquid
properties. The gas±liquid interface was well resolved by the local concentration of computing
points.
The bubble growth and departure process in nucleate pool boiling was directly calculated

using the present method. The predicted bubble growth rate well agreed with the experimental
data. The computed bubble departure diameter was in proportion to the contact angle and the
square root of the surface tension, which coincided with the relation of Fritz. Each component
of heat transfer mechanism was evaluated quantitatively and the result showed that the high
heat transfer rate in nucleate pool boiling was due primarily to the liquid agitation caused by
the bubble motion.
The superheated liquid microlayer beneath the bubble is not modeled in the present

calculation although there are certain evidences of its existence in nucleate boiling. It is obvious
that the bubble growth rate is much in¯uenced by the microlayer evaporation. In the present
study, a superheated liquid layer is placed over the vapor bubble at the beginning of bubble
formation, which may have a similar e�ect as the microlayer. The microlayer also enhances the
heat transfer in nucleate pool boiling. Though the e�ect of latent heat is small in our
calculation of Han±Gri�th's experiment, this is not su�cient to conclude that its contribution
is small in all cases of nucleate boiling since it may also depend on the conditions such as heat
¯ux and pressure. For instance, it may be more signi®cant for the saturated boiling in high
system pressure.
In this study, the calculations were limited to the nucleate boiling with relatively low wall

superheat and additional physical models for non-equilibrium vapor phase are required for the
application to a wide range of two-phase boiling problems.
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